AGS IPM Emittance and Coherence Measurements

This document is intended to serve as a guide for Operations on making AGS IPM and beam coherence measurements.

I. Emittance measurements using the AGS IPM application

Programs used in this step:

- AGS IPM application (StartUp -> AGS Applications -> AgsIpm)
- StarOffice at mcr_3, containing the current day's spreadsheet file

Procedure:

- 1. Open the AGS IPM application, and ensure that beam is available in the AGS.
- 2. Click on "Acquisition (Single-Cycle). Figure 1 below shows what reasonable data should look like.

Figure 1

- 3. If noise can be seen on any of the plots (in this example, the bottom left), then the background trace probably needs to be refreshed.
 - Configure -> Background -> Init (to 0) (both horizontal and vertical, see Figure 2)
 - Inhibit beam in the AGS.
 - Click "Acquisition (Single-Cycle)."
 - Uninhibit beam in the AGS
 - Configure -> Background -> Copy from mmnt (both horizontal and vertical)
 - Click "Acquisition (Single-Cycle)" to acquire data using the new backgrounds.

Figure 2

4. Copy the values shown at the bottom-right of figure 1 for Horizontal and Vertical Emittances into the appropriate cells of the spreadsheet shown below (Figure 3). The emittance cells are adjacent to their corresponding times.

U	V	W	X	Y	Z	AA	AB	AC	AD	AE	AF
ipm	ipm	ipm	ipm	ipm	ipm	ipm	ipm	ipm	ipm	ipm	ipm
time(ms)	H(mmr	V	time	н	V	time	н	٧	time	Н	v
1275	16.5	9.3	1475	19.1	_11.5	1575	21.0	13.6	1775	22.3	14.3
1275 16.5 9.3 1475 19.1 11.5 31575 21.0 13.6 1775 22.3 14.3 Figure 3											

II. Measuring Beam Coherence

Programs used in this step:

- AgsCoherence (run /home/cfsb/mcr/pp/AgsCoherence)
- StarOffice at mcr_3, containing the current day's spreadsheet file

Procedure:

- 1. Open AgsCoherence and ensure that beam is available in the AGS
- 2. Read the four times from the spreadsheet file (Figure 4)

AG	AH	AL	AJ	AK	AL	AM	AN
0+a	0+dq	12+a▶	12+dq	36-₽	36-dq	36+∌	36+dq
	1339 ms		1453 ms		1514 ms		1684 ms

Figure 4

3. Input the first time entry into the DelayTime[ms] field

Figure 5

- 4. Click the Start button and notice the Coherence Amplitude value in the top window, and Delta value in the bottom window (Figure 5).
- 5. Record the amplitude and delta values into the _+a and _+dq columns corresponding to the delay chosen.